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In the present study, calculations are performed to obtain the period-mean Lagrangians 
of the plane and flexural vibrations of a cantilevered three-layer rectangular piezoelectric 
resonator with a corrugated metallic intermediate layer. The finite elements method is 
used to calculate the natural frequencies. 

A significant improvement in the characteristics of electromechanical transducers can 
be achieved through the use of elements with different properties. For example, the effi- 
ciency of a transducer whose operation is based on the transverse piezoelectric effect can 
be increased if an electrically passive corrugated layer is included in it. However, no 
rigorous theoretical calculations have yet been completed for such a resonator. 

In the present study, we propose an approximate method of determining the natural 
and forced vibrations of a cantilevered three-layer rectangular piezoelectric ceramic 
transducer with a corrugated metal intermediate layer (liner). 

We will examine a rectangular three-layer sandwich. The two outermost layers are made 
of a thickness-polarized piezoelectric ceramic whose front surfaces have been covered with 
electrodes. We assume that a thin metal plate has been placed in the middle of the sandwich. 
The sinusoidal plate has been corrugated along one side and is rigidly attached to the piezo- 
ceramic layers. The entire sandwich is secured in cantilever fashion, as shown in Fig. I. 

We will refer the transducer to a Cartesian coordinate system 0~, having chosen the 
06 and Oq axes to be in the middle plane of the transducer. The O~ axis coincides with 
the direction of polarization of the piezoceramic plates (see Fig. I). Let the transducer 
have the dimensions a • b • h. The thicknesses of the piezoceramic layers are the same 
and are equal to 2hi, while the overall height of the corrugated liner is equal to 2h0. 
Thus, h = 2(h0) + 2(2hi). 

We introduce dimensionless coordinates by means of the formulas 

We use u(J)(x,x y' z), u(~)(x, y, z), u(~)(x, y, z) to represent the displacements in the 

j-th layer and ~P(k)(x, y, z) (k = i, 3) to represent the potential in the outmost layers 

(the superscript j = i denotes the bottom layer, j = 2 denotes the middle layer, and j = 
3 denotes the top layer). 

Assuming the thickness h of the transducer to be small compared to the characteristic 
dimensions a and b and taking the outermost piezoceramic layers to be stiff relative to the 
corrugated liner, we adopt the following hypotheses: 

i) the normal stresses Ozz(J) are much lower than the stresses Oxx(J ) and Oyy(J), j = 

i, 2, 3; 

2) cylindrical bending takes place, i.e., all of the functions are independent of y 

Uy(J) = 0, j = i, 2, 3; and 

3) the displacements Uz(J) are the same for the entire sandwich and depend only on 

the coordinate x, i.e., Uz(J) = w(x), j = i, 2, 3; 
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Fig. 1 

4) the displacements Ux(J) are different in each layer and obey the broken-normal hypo- 
thesis [i]: 

= ~ +z~j, j = t , 2 , 3 .  

Here, Ucx(J ) Ucx(J)(x) are the displacements of the middle planes of the j-th layers in 

the direction of the x axis; zj is the z coordinate of the local coordinate system with its 

origin at the middle of the j-th layer; ~i = ~ = -~,x/a is the angle of rotation of the 

normal in the piezoceramic layers; ~2 is a function of x; 

5) the component of electric induction D (k) along the x axis is negligibly small, i.e., 
X 

D (k) = 0, k = i, 3; 
x 

6) in accordance with [2], the intervening corrugated layer can be replaced by an 
equivalent orthotropic plate whose effective characteristics are found from the condition 
of equality of the displacements and angles of rotation with the application of identical 
forces and moments to suitably cut-out elements. 

If the scheme normally employed for multilayered piezoceramic plates [3, 4] is used 
here, the above-formulated hypotheses make it possible to determine the stress and strain 

components simply in terms of the functions u~), u~:), and w. 

Since the effective characteristics of the orthotropic plate are different in tension 
and bending, the displacement fields should also be divided into parts describing tension 
and bending. This can be done by introducing the functions 

t t  : ~(~)  u (3t u ( O  (3) c x  ~ c x  ~ ~ == c~ - -  UCX " 

Then t h e  f u n c t i o n  u w i l l  d e s c r i b e  t e n s i o n  o f  t h e  t r a n s d u c e r ,  w h i l e  t h e  f u n c t i o n s  v and 

w i l l  d e s c r i b e  i t s  b e n d i n g .  

Now we assume that vibrations of the transducer is caused by potential differences 
~(1) and #(s) between the top and bottom electrodes of the bottom (i) and top (3) layers, 
respectively. Meanwhile, ~(i) and ~(~) change in accordance with a harmonic law exp(i~t). 
Thus, we are stuaying a problem concerning the steady-state vibration of a transducer. As 
is often done for such prpblems, we will use the same notation for the amplitude functions. 
For example,: if ~(1)=~(1)exp(i~t), then instead of ~(i) we will use the notation ~(i), etc. 

In accordance with the foregoing, we should separate the above overall problem on 
steady-state vibration into problems concerning plane vibration (p) and flexural vibration 
(f). After completing several transformations, we can obtain formulas for the period- 
averaged kinetic Kp, Kf and potential Wp, Wf energies of the transducer for plane and 

flexural vibrations: 

i p z Kp = • .f 7hlu dx, 
0 

1 f ,,f;w' • V~w =) dx, 
o 

1 

w p i = x S  ~, ~ u d x  
o 
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bhcil 31// Ph. w 
•  f ~ = o ) a  i i  7-'  w = ~ ;  

4a ' 11 a 

- -  a %'(@") m (~)); mp=aB3 ' (W(~)+q) (3 ) ) ;  m,f--~ -~---. - -  

Cll II 

f t ~  f 9 ~  
"~l = 2hi + "-f o pc" ~ = --  3 hohl!pc; 

f 4 ~ P f ~'~2~p~l; 
"Ths = ~ hlThi; ~h4 : 

P 

f 1 ~  f f t ~ a  f 

f 2 ~0~iHf l ;  f ~ ( h ~ f 
= _ ~ ,  = _ ~ + t o )  ~ ;  ~-3 -f 

f ~ ~,(2~lQn + h0Hfl); f . h t ~  a~ f- = ~ = o = 2 ~ o  ~-~)~,~,~, 
ho. hi. 

2 
0~1 = (~1 + ~ , / ~ ) / ~ i , ,  

f f 
a ~  = A~dcn ;  "pc = O~r 

1~1 = % - c7~/c~; 

B3i = %~ + e ~ / c ~ ;  B~2 = e3~ - -  e~c,~/c~; 
f /  HPn = DPl,lcn; H lfl = Dl l ]  CII; 

DPl AP~ - -  ( ~P "~/A p" Dfx  A n  - -  I, A l~)  I-  ~ .  = \" 13] / 33~ = 

In  t h e  above  f o r m u l a s ,  Cim, ~im and elm a r e  s t a n d a r d  [5] n o t a t i o n s  f o r  t h e  e _ l a s t i c  

m o d u l i ,  p e r m i t t i v i t i e s ,  and p i e z o e l e c t r i c  c o n s t a n t s ,  r e s p e c t i v e l y ;  Pk i s  t h e  d e n s i t y  o f  t h e  
p i e z o c e r a m i c ;  Aim a r e  t h e  e l a s t i c  modul i  o f  t h e  o r t h o t r o p i c  m a t e r i a l  [ 6 ] ;  Dim a r e  t h e  
s t i f f n e s s e s  o f  t h e  o r t h o t r o p i c  m a t e r i a l  f o r  a p l a n e  s t r e s s  s t a t e .  The s u p e r s c r i p t s  p and 
f w i t h  A~m and D~m d e n o t e  c h a r a c t e r i s t i c s  in  t e n s i o n  and b e n d i n g .  The modut i  a r e  d i f f e r e n t  
f o r  t h e s e  p r o b l e m s  and have  t h e  form 

Dpl = E Dp3 = vDP1, D p k lE ~ ,  . ~ -  -~-, 

Dfi_ E f k4E D f A f = E / k  o. 

Here, 

v2 l ~/T--i-- ~ I. K ( k ) +  ~ (K ( k ) - - ( t -  472) E (k))]; D = 1 - -  k-~2; ko=2- ~ 

k~ = E - -  

k.  = ~ V 1 - k~ K (k) -f ~'~Z' / ~  -------- .~ ((1 - -  k~) K (k) + (2k ~ - -  1) E (k)) ; 

k 3 =  2 V t  k 2K(k); k 4=a4ko; e = - ~ 5  kS @ . 2nho. 
he--- 5 - -  . 2h ~ :i--~Eyz ' Y= - -~ ,  

where K(k) and E(k) are first- and second-order complete elliptic integrals, respectively; 
I is the length of one period of the sinusoidal corrugation; ~ is its thickness; E and 
are the elastic modulus and Poisson's coefficient of the material of the corrugation. 
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Finally, 

5E (k) 
~OC ~h ~ ~ 1 - ~  ~ 

(Oc is the density of the material of the corrugation). 

It should be noted that a change in the direction of the corrugation of the middle layer 
in the direction along the y axis is accompanied by transposition of the coefficients 

Dp~f iand DP'f'is while A~s is set equal to E/(2(I + ~)). All of the other relations remain 

valid in this case. 

To obtain the equations of motion, it is convenient at this point to resort to the 
principle of virtual displacements for steady-state vibrations: 

where Lp,f = Kp,f - Wp,f. 

boundary conditions 

6 L p , f  = O, 

The variations ~u, 6v, and 6w must conform to the principal 

~ = 0 ,  v = O ,  a = O ,  w ~ = O ,  x = O .  

Thus, we will have linear unidimensional boundary-value problems for both plane and 
flexural vibrations of the transducer. Such problems can be solved in closed form. To 
find the natural frequencies in the respective problems, it is sufficient to set #p and ~f 
equal to zero and solve eigenvalue problems. 

The natural frequencies mP (m = i, 2, ...) of the plane vibrations will be determined 
by the formula m 

P u?m co , .=  phVp ~ m , m = l  2 

However, the exact solutions obtained in closed form for the problem of flexural 
vibration are quite cumbersome and are not completely satisfactory from a computational 
standpoint. This has to do with the fact that - as is usually the case in dynamic prob- 
lems of electroelasticity [5] - it is necessary to determine complex roots of a bicubic 
equation, suitably normalize complex-valued hyperbolic functions, and find the zeros of a 
sixth-order complex determinant. Thus, the computer program that was developed to obtain 
an exact solution has proven unsatisfactory. It has been determined to be much more effi- 
cient and accurate to use the finite elements method (FEM) to solve the variational prob- 
lem 6Lf = 0. Since the given problem requires us to find the extremum of the functional 

Lf in the class of functions v and w satisfying the conditions 

v ~ W~ [0, 1 l, v (0) = O, w ~ W~ [0, 11, w (0) = zt~,~= (0), 

quadratic Langrangian elements for v and cubic Hermitian elements for w [7] are found to 
be a convenient finite-element approximation. A program written on the basis of these 
approximations proved to be exceptionally effective both in terms of speed and in regard 
to accuracy and flexibility. Finding the natural frequencies ~f of flexural vibration by 
the FEM reduces to a generalized eigenvalue problem: 

[A] {v} = ( ~ f ) : [ B  l {v}. 

Here, {v} is the column vector of the "nodal displacements" v, w, and W,x; the mass [B] 
and stiffness [A] matrices are positive-definite and symmetric. The problem was solved 
numerically on the basis of Householder transforms in combination with the QL-algorithm 
[8]. 

Table 1 shows the first four natural frequencies ~f (m = i, 2, 3, 4) of flexural 
m 

vibrations of thetransducer calculated from programs based on the exact solution and the 
finite-element approximation (M is the number of finite elements). The initial data for 
Table 1 was as follows: the material of the piezoceramic layers- ceramic TsTS-19; the 
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TABLE 1 

Exact i FEM I FEM 
solu- (M=~) (M=IO) 

m tion 
f ~, iO -~, rad/sec 

0,01.794 
0,07601 
0,1641 
0.2602 

0,0i797 
0,07646 
O. 1659 
0,2647 

0,01795 t 
0,07604 2 
0,1643 3 
0,2604 4 

TABLE 2 

N 

I I 120 
m 

~o f .  iO -~, rad/sec 

0,01498 
0,056tt 
0.1167 
011986 

0,01644 
0.06395 
0,i364 
0,2210 

0,01740 
0,07093 
O.15PA 
0'2440 

0,01797 
0,07646 
0,i659 
0,2647 

material of the corrugated layer - aluminum; a = 0.02 m; h = 0.002 m; 2h I = 0.0005 m; thick- 
ness of the sinusoid of the corrugation ~ = 0.0001 m; corrugation along the length a; number 
of corrugations N = a/l = 20. 

It is evident from Table 1 that the FEM provides very good accuracy in determining the 
natural frequencies even for a small number of elements. The FEM calculations also require 
less computer time and are stable against changes in the initial data. 

It should be pointed out that the first four natural frequencies of plane vibration 
~P are an order of magnitude greater than the corresponding natural frequencies of flexural 
m 

vibration ~f. Thus, given the same initial data as for Table i, u p = 0.2405.106 rad/sec, 
m 1 

~ = 0.7216"106 rad/sec. Since the first two natural frequencies of the transducer are of 

the greatest practical value, the importance of the plane vibrations is minor in the given 
case. 

Table 2 shows the dependence of the natural frequencies m f of flexural vibration on the 
m 

number N of corrugations along the cantilever as determined by the FEM with M = 4. It is 
apparent that an increase in N is accompanied by an increase in the natural frequencies. 
This tendency can be attributed to an increase in the stiffness of the system. 

Thus, the method and programs developed here make it possible to efficiently determine 
the natural frequencies and other parameters of vibrational processes in a cantilevered 
rectangular transducer with a corrugated liner. By changing the initial data, it is possible 
to optimize the parameters of the transducer in order to optimize its characteristics. 

The method proposed here can also be generalized to other laminated unidimensional or 
axisymmetric transducers with soft passive intermediate layers. 
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